

Boletim Técnico BT- 301.1

No. of Store

Filtro Elétrico para Luminárias LED Código do Produto: PD1102001

Alt. 84,5 Larg. 93 Prof. 275 Peso: 4,08 kg

Os LEDs são normalmente alimentados em corrente continua com baixa tensão, que, ao serem associados em série/paralelo formam uma luminária. Esta por sua vez será alimentada por uma rede 127V ou 220V, através de um conversor AC/DC (driver, fonte chaveada) o qual é incorporado à luminária. É a partir deste conversor que surgem os distúrbios elétricos, o principal deles! a distorção da corrente, (também conhecido com distorção harmônica) que, ao circular pela rede (dependendo da impedância desta) distorce a forma de onda da tensão, que vai alimentar os demais equipamentos instalados naquela rede.

Atualmente, o conversor AC/DC (driver) de uma luminária LED, é fabricado com e sem Filtro. As luminárias sem o Filtro de fábrica tem a distorção de corrente maior do que 100 %, além de o <u>fator</u> <u>de potência ser capacitivo</u>, o que impede o uso de gerador para alimentar o sistema de iluminação.

Quando a luminária sai de fábrica com Filtro corretamente dimensionado, a distorção pode ser da ordem de ± 10%, porem o fator de potência continua capacitivo.

A distorção de corrente vai causar a distorção da tensão da rede que alimenta os equipamentos eletro/eletrônicos causando: interferências no funcionamento e até a falha total.

Nas iluminações de médio e grande porte, a distorção do conversor AC/DC (driver) das luminárias (mesmo com Filtros) e o efeito capacitivo destes, vão comprometer ou mesmo impedir o uso de geradores.

A distorção da tensão vai causar:

- ✓ Aquecimentos: Dos cabos de alimentação, transformadores de força, sistemas de chaveamento e proteções, ocasionado aumento do consumo de energia;
- ✓ Perdas de dados, travamentos e danificação das placas eletrônicas nos sistemas micro processados e computadores, sobreaquecimento de motores com danos nos rolamentos;
- ✓ Interferências nos sistemas de telecomunicações;
- ✓ Comprometimento das redes de distribuição das Concessionárias de energia elétrica.

A fim de resolver o problema da distorção e o efeito capacitivo usa-se Filtros especiais, em série com as cargas, estes vão limitar a distorção da corrente, consequentemente a distorção da tensão, e tornar o fator de potência indutivo.

Exemplo deste tipo de Filtro é o PD1102001 produzido pela DICEL ENGENHARIA.

Fácil instalação Operação 24H à plena carga.

Construção:

Monofásico/bifásico;

Compacto; com conectores.

Caixa de aço. Pintura a pó químico;

Dimensões (mm):

Alt.84,5 Larg.93 Prof. 275

Peso:4,08 kg

Indicado para:

Iluminações de médio ou grande porte: Industriais, comerciais e residenciais.

Recomendado para grupo de Luminárias que acendem e apagam ao mesmo tempo:

- 1. Respeitar a potência máxima para proteção do Filtro.
- 2. Respeitar a potência mínima para obter a máxima atenuação da distorção harmônica

Especificações técnicas

Tensão	220 a 240 Volts AC/ 60Hz			
Corrente máxima	2 Amperes			
Potência máxima até	440 W			
Fator de Potência	0,95 (Indutivo)			
Quantidade máxima de Luminárias	440W [÷] pela potência de uma Luminária.			
Atenuação da distorção da corrente	Até 90 %			
Corrente especificada (nominal)	Para temperatura ambiente ≤ 38 °C			
Potência das luminárias para maior	Máxima 440W			
atenuação da distorção da corrente.	Mínima 300W			
Corrente (I) acima de 38°C	$I = In\sqrt{(85 - tamb)/45}$			
Tanaão do tanto	2240 VDC, 2s (fase/fase)			
Tensão de teste	2720 VDC, 2s (fase/gabinete)			
Sobroorgo	1,5xIn durante 3min por hora, ou			
Sobrecarga	2,5xIn durante 30s por hora			
Categoria climática	IEC 60068-1			
Atende a recomendação	IEC 61000-3-2			

Nota: Ver testes de campo nas páginas seguintes.

Resultados do Teste de campo Circuito com 16 Luminária LED 25W.

Especificações de etiqueta de uma Luminária.

Modelo	Volts	Amps rms	Part.(A)	Pot. (W)	Pot.(VA)	PF	dPF	DH(A)	T.oper.C°
1xSE240604	85/240	235mA/220V	NE	25	NE	NE	0,5	NE	-25 a 50

NE - Não especificado. Part. (A) - Corrente de partida

Medições em Laboratório sem filtro. CKT. com 16 Luminárias. Fator de potência: capacitivo

Modelo	Volts	Amps rms	Part.(A)	Pot.(W)	Pot.(VA)	PF	dPF	DH(A)%	T.Lâmp.C°
16xSE240604	223	2,77	5,6	305	616	-0,49	-0,98	170	47

Tamb. 30,6

Medições em Campo com filtro. CKT. com 16 Luminárias. Fator de potência: Indutivo

Modelo	Volts	Amps rms	Part.(A)	Pot.(W)	Pot.(VA)	PF	dPF	DH(A)%	T.Lâmp.C°
16xSE240604	220	1,48	5,6	315	330	0,95	0,96	9,5	45

Tamb. 30.6

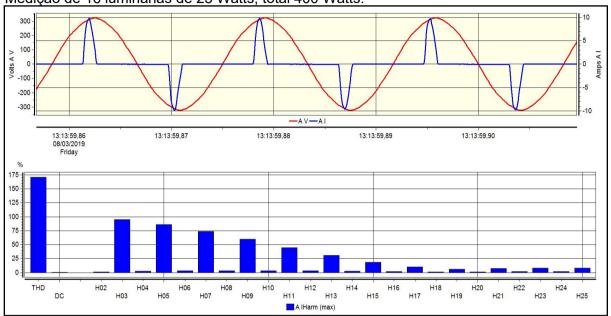
Constatações de um circuito com 16 Luminárias de 25 Watts:

Parâmetro	Sem Filtro	Com Filtro	Observações
Corrente	2,77 A	1,48	– 46,5 %
Potência Aparente	616 VA	330 VA	-46,4 %
Potência Ativa	305 W	315 W	+ 3,2 %
Distorção da corrente	170 %	9,5 %	- 94,4 %
Fator de Potência	- 0,498 Capacitivo	0,95 Indutivo	

Resultados com o uso do Filtro nas Luminárias:

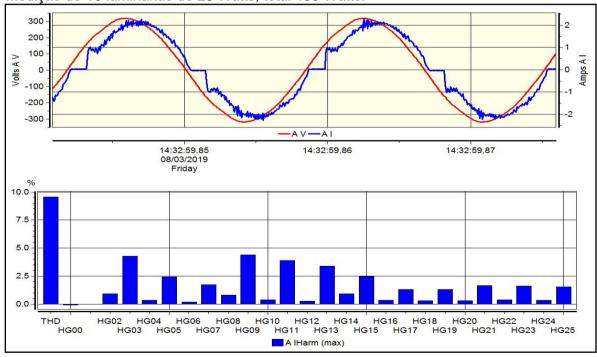
- ✓ Queda da corrente na linha, Redução das perdas pelo efeito Joule;
- ✓ Queda da Potência Aparente (VA);
- ✓ Aumento da Potência Ativa (W);
- ✓ Queda da distorção da corrente;
- ✓ Fator de Potência indutivo (permitindo o uso de gerador).

Av. Assis Brasil Nr. 3090 conj. 206 cep.: 91010.003 Porto Alegre - RS CNPJ 90.761.057/0001-04



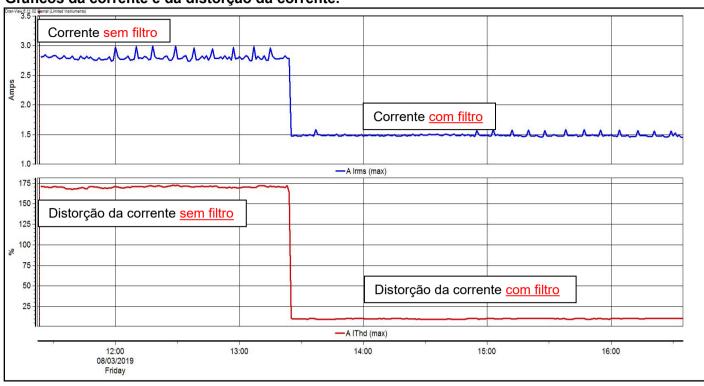
Formas de onda e distorção da corrente, sem Filtro e com Filtro

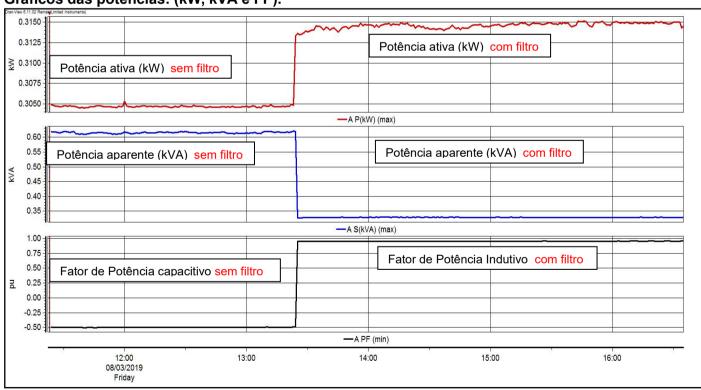
Luminárias sem Filtro.


Formas de onda: VM=tensão, AZ= corrente e distorção da corrente.

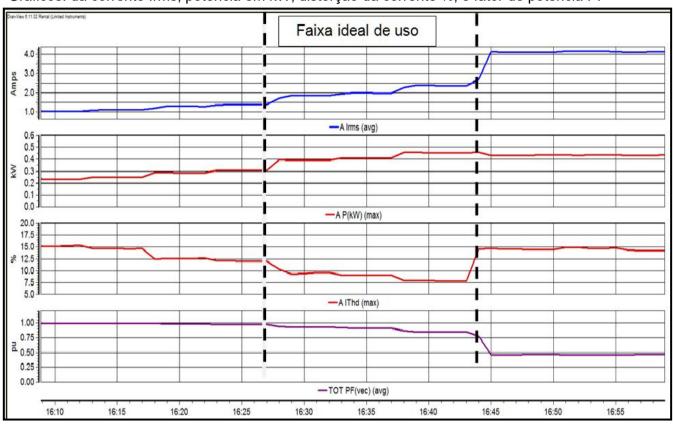
Medição de 16 luminárias de 25 Watts, total 400 Watts.

Luminárias com Filtro.


Formas de onda: VM=tensão, AZ= corrente e distorção da corrente. Medição de 16 luminárias de 25 Watts, total 400 Watts.


Av. Assis Brasil Nr. 3090 conj. 206 cep.: 91010.003 Porto Alegre - RS CNPJ 90.761.057/0001-04

Gráficos da corrente e da distorção da corrente.



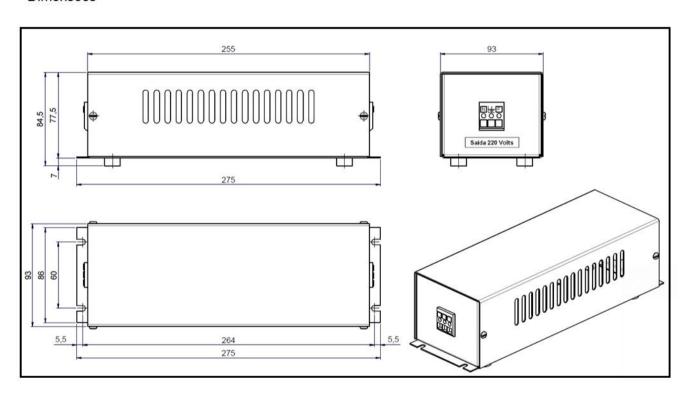
Gráficos das potências: (kW, kVA e FP).

Gráficos: da corrente Irms, potencia em kW, distorção da corrente %, e fator de potência PF

Equipamento utilizado nas medições.

Spectrum Analyser: Power Xplorer Mavowatt 70 Set 3

Software: Dranview 6 Enterprise com USB Dongle key


Fabricante:

GOSSEN METRAWATT

GMC-I MESSTECHNIK GMBH D-90327 NÜRNBERG Alemanha.

Dimensões

Leia cuidadosamente todas as especificações e as advertências feitas, antes de instalar o Filtro e colocá-lo em operação.

Cuidado com as advertências.

Instalação

O Filtro é refrigerado por convecção, logo será instalado em local ventilado, não obstruir as entradas de ar no local da instalação.

É imprescindível que seja feita a ligação do terminal terra PE, com o sistema de aterramento local usando cabo igual ao da fase.

O Filtro com conector não possui fusível interno. Um disjuntor externo para proteção do Filtro e da carga será instalado a montante do Filtro. A corrente e a tensão da carga não podem ultrapassar as especificações do Filtro.

Responsabilidades

É responsabilidade do usuário final do Filtro, a contratação de Pessoal Qualificado para a instalação, comissionamento e manutenção preventiva, sempre seguindo as normas de segurança em vigor.

Pessoal Qualificado

Entende-se por pessoal qualificado que, as pessoas autorizadas para o transporte e a instalação do Filtro estejam formalmente abilitadas, e com conhecimentos técnicos para a instalação mecânica e elétrica, de acordo com as práticas de segurança e padrões estabelecidos pelas normas em vigor.

Garantir que, as especificações "sinais de aleta/advertências" não sejam removidos nem prejudicados por ações externas.

Consequências graves irão ocorrer se não forem observados os "sinais de alerta/advertências"

Advertências

- > As condições no local da aplicação devem estar de acordo com todas as especificações para o Filtro que estiver sendo usado.
- Perigo de choque elétrico. Os Filtros contem capacitores que armazenam tensão. Mesmo após ter sido desligado da rede, a tensão estará presente nos terminais, por até três minutos.
- > A sobrecarga, de tensão ou corrente são admissíveis para o Filtro , dentro das especificações acima destes valores pode causar sua destruição.

Suporte Técnico: Engenharia de Produtos, engenharia@dicelrs.com.br